
Evaluating the logical equivalent of the minimal essence of the
Gödel sentence in Minimal Type Theory and Prolog

G := ∃X ~Provable(X, G) // Written in Minimal Type Theory **
Automatically translated into a Directed Acyclic Graph by the MTT compiler

[01] G (02)(04)
[02] THERE_EXISTS (03)
[03] X
[04] NOT (05)
[05] Provable (03)(01) // cycle indicates
 // infinite evaluation loop

** x := y means x is defined to be another name for y

⊢X

∃

G
Numbers indicate

Order of Evaluation

~
cycle

indicates
error

⊢ Means Provable
(1)

(2)

(1) (2)

Copyright 2017 Pete Olcott

254 Chapter 10 The Relation of Prolog to Logic
Programming in Prolog Using the ISO Standard Fifth Edition by Clocksin and Mellish

Finally, a note about how Prolog matching sometimes differs from the unification used in
Resolution. Most Prolog systems will allow you to satisfy goals like:

equal(X, X).
?- equal(foo(Y), Y).

that is, they will allow you to match a term against an uninstantiated subterm of itself. In this
example, foo(Y) is matched against Y, which appears within it. As a result, Y will stand for
foo(Y), which is foo(foo(Y)) (because of what Y stands for), which is foo(foo(foo(Y))), and so
on. So Y ends up standing for some kind of infinite structure.

Note that, whereas they may allow you to construct something like this, most Prolog systems
will not be able to write it out at the end. According to the formal definition of Unification, this
kind of “infinite term” should never come to exist. Thus Prolog systems that allow a term to
match an uninstantiated subterm of itself do not act correctly as Resolution theorem provers. In
order to make them do so, we would have to add a check that a variable cannot be instantiated to
something containing itself. Such a check, an occurs check, would be straightforward to
implement, but would slow down the execution of Prolog programs considerably. Since it would
only affect very few programs, most implementors have simply left it out 1.

1 The Prolog standard states that the result is undefined if a Prolog system attempts to match
a term against an uninstantiated subterm of itself, which means that programs which cause
tills to happen will not be portable. A portable program should ensure that wherever an
occurs check might be applicable the built-in predicate unify_with_occurs_check/2 is used
explicitly instead of the normal unification operation of the Prolog implementation. As its
name suggests, this predicate acts like =/2 except that it fails if an occurs check detects an
illegal attempt to instantiate a variable. END-OF-QUOTED-MATERIAL

