
r 
318 

Theorem 12.1 

Figure 12.1 

~ 12 Limits of Algorithmic Computation 

if M applied to w halts, and 

if M applied to w does not halt. Here qy and qn are both final states of H. 

There does not exist any Turing machine H that behaves as required by 
Definition 12.1. The halting problem is therefore undecidable. 

Proof: We assume the contrary, namely that there exists an algorithm, 
and consequently some Turing machine H, that solves the halting problem. 
The input to H will be the description (encoded in some form) of M, say 
WM, as well as the input w. The requirement is then that, given any (WM, w), 

the Turing machine H will halt with either a yes or no answer. We achieve 
this by asking that H halt in one of two corresponding final states, say, q y or 
qn' The situation can be visualized by a block diagram like Figure 12.1. The 
intent of this diagram is to indicate that, if M is started in state qo with input 
(WM, w), it will eventually halt in state qy or qn' As required by Definition 
12.1, we want H to operate according to the following rules: 

if M applied to W halts, and 

if M applied to W does not halt. 

John
Highlight

John
Highlight

John
Highlight

John
Highlight



Figure 12.2 

~ 12.1 Some Problems that Cannot Be Solved by Turing Machines 319 

Next, we modify H to produce a Turing machine H' with the structure 
shown in Figure 12.2. With the added states in Figure 12.2 we want to 
convey that the transitions between state qy and the new states qa and qb are 
to be made, regardless of the tape symbol, in such a way that the tape 
remains unchanged. The way this is done is straightforward. Comparing H 
and H' we see that, in situations where H reaches qy and halts, the modified 
machine H' will enter an infinite loop. Formally, the action of H' is de­
scribed by 

if M applied to w halts, and 

if M applied to w does not halt. 
From H' we construct another Turing machine fl. This new machine 

takes as input WM, copies it, and then behaves exactly like H'. Then the 
action of fl is such that 

if M applied to WM halts, and 

if M applied to WM does not halt. 

John
Highlight

John
Highlight

John
Highlight

John
Highlight

GOD
Highlight



320 

Theorem 12.2 

~ 12 Limits of Algorithmic Computation 

Now if is a Turing machine, so that it will have some description in k*, 
say w. This string, in addition to being the description of if can also be used 
as input string. We can therefore legitimately ask what would happen if if is 
applied to W. From the above, identifying M with if, we get 

if if applied to w halts, and 

if if applied to w does not halt. This is clearly nonsense. The contradiction 
tells us that our assumption of the existence of H, and hence the assump­
tion of the decidability of the halting problem, must be false. • 

One may object to Definition 12.1, since we required that, to solve the 
halting problem, H had to start and end in very specific configurations. It is, 
however, not hard to see that these somewhat arbitrarily chosen conditions 
play only a minor role in the argument, and that essentially the same ,I 
reasoning could be used with any other starting and ending configurations. 
We have tied the problem to a specific definition for the sake of the discus-
sion, but this does not affect the conclusion. 

It is important to keep in mind what Theorem 12.1 says. It does not 
preclude solving the halting problem for specific cases; often we can tell by 
an analysis of M and w whether or not the Turing machine will halt. What 
the theorem says is that this cannot always be done; there is no algorithm 
that can make a correct decision for all WM and w. 

The arguments for proving Theorem 12.1 were given because they are 
classical and of historical interest. The conclusion of the theorem is actu­
ally implied in previous results as the following argument shows. 

If the halting problem were decidable , then every recursively enumer­
able language would be recursive. Consequently, the halting problem is 
undecidable. 

Proof: To see this, let L be a recursively enumerable language on k, 
and let M be a Turing machine that accepts L. Let H be the Turing machine 

John
Highlight


