Next, we modify H to produce a Turing machine H' with the structure shown in Figure 12.2. With the added states in Figure 12.2 we want to convey that the transitions between state q_y and the new states q_a and q_b are to be made, regardless of the tape symbol, in such a way that the tape remains unchanged. The way this is done is straightforward. Comparing H and H' we see that, in situations where H reaches q_y and halts, the modified machine H' will enter an infinite loop. Formally, the action of H' is described by

\[q_0 w_M w \vdash^* H' \omega, \]

if M applied to w halts, and

\[q_0 w_M w \vdash^* H' y_1 y_n y_2, \]

if M applied to w does not halt.

From H' we construct another Turing machine \hat{H}. This new machine takes as input w_M, copies it, and then behaves exactly like H'. Then the action of \hat{H} is such that

\[q_0 w_M \vdash^* \hat{H} q_0 w_M w_M \vdash^* \hat{H} \omega, \]

if M applied to w_M halts, and

\[q_0 w_M \vdash^* \hat{H} q_0 w_M w_M \vdash^* \hat{H} y_1 y_n y_2, \]

if M applied to w_M does not halt.